Posts

Fulerenos – forma alotrópica do carbono

Fulerenos

Até a década de 1980, apenas o grafite, o diamante e o carvão eram conhecidos como formas alotrópicas do carbono. Alotropia é um fenômeno que ocorre quando um elemento químico dá origem a duas ou mais substâncias simples diferentes, ou seja, dependendo de como os átomos do elemento químico se ligam, forma uma substância ou outra.

A partir de um experimento envolvendo grafite e feixe de laser, à temperatura específica, dois cientistas (H. W. Kroto e R. E. Smalley) observaram, a partir de espectrometria de massas, várias moléculas até então desconhecidas. As moléculas observadas apresentavam massa molecular entre 44 e 90 unidades, mas a com massa 60 era a mais abundante.  Os cientistas perceberam que aquelas moléculas eram uma nova forma alotrópica do carbono, que seria chamada de fulerenos. Essa descoberta rendeu aos cientistas o prêmio Nobel de química em 1996. A primeira síntese de um fulereno, o C60 foi descrita em 1990.

Os fulerenos são considerados compostos aromáticos, já que possuem elétrons pi em ressonância. A denominação fulereno é uma homenagem ao arquiteto R. Buckminster Fuller que construiu e popularizou as cúpulas geodésicas, que se assemelham as estruturas moleculares dos fulerenos.

Os fulerenos são moléculas estruturadas em forma de “gaiolas”, ou seja, são fechada em si. Os fulerenos são constituídos por uma rede formada por pentágonos e hexágonos, fechando assim a “esfera”. Cada carbono de um fulereno está hibridizado em sp² e forma ligações sigma (ligação simples) com três outros átomos de carbono, restando um elétron de cada carbono, que fica deslocalizado num sistema de orbitais moleculares que atribui à molécula o caráter aromático.

Os fulerenos possuem quantidades diferentes de átomos de carbono, podendo ser formados por 20, 60, 70, 100, 180, 240 e até 540 átomos de carbono. É comumente falado do C60 e também do C70, pois estes foram os primeiros a serem descobertos e também são os mais comuns, mas os outros também têm importância na classe dos fulerenos.

Os fulerenos como dito anteriormente, são estruturados na forma de “gaiolas”, ou esferas ocas, que são formadas por anéis de 5 e 6 átomos de carbono, sendo estas estruturas bastante estáveis, sendo possível encontrá-las na natureza, como mais uma forma alotrópica do carbono.

Estes compostos possuem a capacidade de “aprisionar” átomos ou moléculas de gases em seu interior. Um exemplo é o aprisionamento do hélio e do argônio no interior de um tipo de fulereno, que foi encontrado, sendo que os gases guardavam todas as características dos isótopos presentes.

Para uma molécula “entrar” dentro da estrutura dos fulerenos é necessário que ela possua uma determinada quantidade de energia, pois ela tem que romper a resistência provocada pelos elétrons livres da estrutura. Quando estas moléculas estão no interior da estrutura, elas não conseguem sair.

Quando há a penetração de átomos de metais no interior dos fulerenos, formam-se os bucketos, sais de fulerenos, que possuem faces metálicas.

Os fulerenos em estado de pureza elevado, apresentam cores distintas. O C60, em solução de solvente orgânico, é violeta, enquanto o C70 é marrom, cor de tijolo. Já o C84 é marrom e o C86 é verde oliva, segundo Thakral e Mahta, 2006.

 

Diamante é duro, mas quebra

Diamante é duro, mas quebra…

O diamante é uma das formas alotrópicas do carbono, que também pode se apresentar na forma pura como: grafite, carvão e fulerenos. Em compostos, ele pode ser encontrados em carbonatos, hidrocarbonetos, carbetos, etc.

O diamante possui uma estrutura extremamente unida e com ligações fortes, na qual, cada um dos átomos está unido a outro por ligações covalentes poderosas e altamente direcionadas a quatro carbonos vizinhos, dispostos nos vértices de um tetraedro regular (com orbitais híbridos do tipo sp3).

Esta forma alotrópica do carbono é a substância natural mais dura conhecida pelo homem. O diamante possui dureza igual a 10, segundo a Escala de Dureza de Mohs, que varia de 1 a 10 (1 – talco e 10 – diamante).  O diamante pode ser utilizado para riscar, marcar, ou cortar qualquer outra substância, dura ou não. A dureza do diamante é derivada da sua estrutura altamente compacta.

O diamante além de ser altamente duro, é também um bom isolante elétrico, pois seus elétrons de valência estão firmemente envolvidos nas ligações sigma entre os átomos de carbonos, não sobrando elétrons livres para conduzir corrente elétrica, como no caso da grafite, que possui elétrons livres.

Dureza ou Tenacidade

Dureza – se relaciona à capacidade de um material riscar e ser riscado por outros materiais. Quanto maior for a dureza do material, maior será a sua capacidade em riscar outros materiais ou maior será a sua capacidade em resistir ao risco.
Tenacidade – se relaciona à capacidade de resistir ao impacto. Ou seja, quanto maior for a tenacidade de um material, maior será a sua capacidade em resistir à um impacto físico.

O diamante é altamente duro, ou seja, risca qualquer outro material existente, no entanto, sua tenacidade não é grande como sua dureza. Sendo assim, o diamante pode sim ser quebrado, mas só pode ser riscado por outro diamante. Uma martelada em uma pedra de diamante pode quebrá-lo em diversos pedaços.

Diamante produzido em laboratório

A produção de diamante em laboratório é possível mas não é viável economicamente. A síntese envolve o emprego de altíssimas pressões e temperaturas, o que gera elevado custo de produção.

A primeira vez que se obteve diamante em laboratório foi em 1905, quando o físico Charles Burton alegou haver produzido cristais microscópicos de diamantes pela dissolução de carbono em liga fundida de chumbo e cálcio.

Em 1985, Felix Sebba da Universidade da Virgínia conseguiu produzir diamantes a partir de CaC (carbureto de cálcio) com chumbo fundido, obtendo pequenos cristais de diamante.

Recentemente, diamante foi obtido à temperatura ambiente, tratando o fulereno C60 à altas pressões. O que ocorreu foi a compressão de fuligem do fulereno até ~ 200 atm, produzindo uma pastilha brilhante e translúcida, que se mostrou ser diamante, através de análise por difração de raios-X.

A produção artificial de diamante não é economicamente viável, uma vez que manter condições de altas pressões e temperaturas não é fácil, nem barato. Sendo assim, fica mais barato adquirir um diamante natural do que produzir uma pedra artificialmente.

Escrito por: Miguel A. Medeiros
Revisado em:
 12 de dezembro de 2015

Portfolio Items